Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cochlear Implants Int ; : 1-5, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2244718

ABSTRACT

OBJECTIVES: Universal mask wearing due to COVID-19 has introduced barriers to clear communication. In hearing impaired individuals this can impact informed surgical consent. For cochlear implant candidates, who do not rely on sign language, real-time transcription with a stenographer (CART) is the gold-standard in assistive technologies. If CART is not available, speech to text (STT) applications have been advertised as solutions, but their transcription accuracy with or without an N95 mask is not well-established. Herein, we sought to investigate the transcription accuracy of three STT solutions for iPhone and compare their performance to the CART service at our institution. METHODS: Three native English speakers and three non-native English speakers read two passages (a cochlear implant consent and the non-medical 'Rainbow passage') with and without an N95 mask. Error rates from the comparison of the transcript (from either the STT app or CART) with the original passage were calculated. RESULTS: The CART service had the lowest error rate of all testing conditions (4.79-7.14%). Ava 24/7 (15.0 ± 9.49%) and the iPhone dictation (15.6 ± 6.65%) had significantly lower average error rates than the Live Transcribe (37.7 ± 20.3%) (P < 0.0001) application. Neither the presence of an N95 nor the type of passage had a statistically significant impact on the error rate. CONCLUSION: CART should be used to augment communication with patients who are hard of hearing. If CART is not available, a STT application such as Ava 24/7 or the native iPhone dictation application may be considered, even in the context of medical terminology.

2.
JAMA Otolaryngol Head Neck Surg ; 148(4): 307-315, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1706644

ABSTRACT

IMPORTANCE: Emerging reports of sudden sensorineural hearing loss (SSNHL) after COVID-19 vaccination within the otolaryngological community and the public have raised concern about a possible association between COVID-19 vaccination and the development of SSNHL. OBJECTIVE: To examine the potential association between COVID-19 vaccination and SSNHL. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study and case series involved an up-to-date population-based analysis of 555 incident reports of probable SSNHL in the Centers for Disease Control and Prevention Vaccine Adverse Events Reporting System (VAERS) over the first 7 months of the US vaccination campaign (December 14, 2020, through July 16, 2021). In addition, data from a multi-institutional retrospective case series of 21 patients who developed SSNHL after COVID-19 vaccination were analyzed. The study included all adults experiencing SSNHL within 3 weeks of COVID-19 vaccination who submitted reports to VAERS and consecutive adult patients presenting to 2 tertiary care centers and 1 community practice in the US who were diagnosed with SSNHL within 3 weeks of COVID-19 vaccination. EXPOSURES: Receipt of a COVID-19 vaccine produced by any of the 3 vaccine manufacturers (Pfizer-BioNTech, Moderna, or Janssen/Johnson & Johnson) used in the US. MAIN OUTCOMES AND MEASURES: Incidence of reports of SSNHL after COVID-19 vaccination recorded in VAERS and clinical characteristics of adult patients presenting with SSNHL after COVID-19 vaccination. RESULTS: A total of 555 incident reports in VAERS (mean patient age, 54 years [range, 15-93 years]; 305 women [55.0%]; data on race and ethnicity not available in VAERS) met the definition of probable SSNHL (mean time to onset, 6 days [range, 0-21 days]) over the period investigated, representing an annualized incidence estimate of 0.6 to 28.0 cases of SSNHL per 100 000 people per year. The rate of incident reports of SSNHL was similar across all 3 vaccine manufacturers (0.16 cases per 100 000 doses for both Pfizer-BioNTech and Moderna vaccines, and 0.22 cases per 100 000 doses for Janssen/Johnson & Johnson vaccine). The case series included 21 patients (mean age, 61 years [range, 23-92 years]; 13 women [61.9%]) with SSNHL, with a mean time to onset of 6 days (range, 0-15 days). Patients were heterogeneous with respect to clinical and demographic characteristics. Preexisting autoimmune disease was present in 6 patients (28.6%). Of the 14 patients with posttreatment audiometric data, 8 (57.1%) experienced improvement after receiving treatment. One patient experienced SSNHL 14 days after receiving each dose of the Pfizer-BioNTech vaccine. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, findings from an updated analysis of VAERS data and a case series of patients who experienced SSNHL after COVID-19 vaccination did not suggest an association between COVID-19 vaccination and an increased incidence of hearing loss compared with the expected incidence in the general population.


Subject(s)
COVID-19 , Hearing Loss, Sensorineural , Hearing Loss, Sudden , Vaccines , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Female , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sudden/epidemiology , Hearing Loss, Sudden/etiology , Humans , Male , Middle Aged , Retrospective Studies , Vaccination/adverse effects
3.
Otolaryngol Head Neck Surg ; 163(5): 857-859, 2020 11.
Article in English | MEDLINE | ID: covidwho-618885

ABSTRACT

As a result of the COVID-19 pandemic, telemedicine has been thrust to the forefront of health care. Despite its inherent limitations, telemedicine offers many advantages to both patient and physician as an alternative to in-person evaluation of select patients. In the near term, telemedicine allows nonpandemic care to proceed while observing appropriate public health concerns to minimize the spread of pandemic pathogens. Thus, it behooves practitioners to use telemedicine consultations for common otolaryngology complaints. Assessment of the dizzy patient is well-suited to an algorithmic approach that can be adapted to a telemedicine setting. As best practices for telemedicine have yet to be defined, we present herein a practical approach to the history and limited physical examination of the dizzy patient in the telemedicine setting for the general otolaryngologist. Indeed, once the acute crisis has abated, we suspect that this approach will continue to be an effective way to manage dizzy patients.


Subject(s)
Algorithms , Betacoronavirus , Coronavirus Infections/complications , Dizziness/therapy , Otolaryngology/methods , Pneumonia, Viral/complications , Telemedicine/methods , COVID-19 , Coronavirus Infections/epidemiology , Dizziness/etiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL